来自中国科大的消息显示,中国科大中国科学院微观磁共振重点实验室杜江峰、王亚、李兆凯等人在量子机器学研究中取得重要进展,研发出新型量子特征提取算法,实验实现了对未知量子系统矩阵的分析与信息提取。

机器学是指使用计算机从大量历史数据中挖掘隐含规律,并用于后续预测或者分类的过程。机器学是人工智能的核心。为了成功完成特定任务,人工智能往往需要大量数据用于总结与分类,这对计算机系统的存储与处理能力提出了很高的要求。

量子机器学可以将量子算法的并行加速特应用于人工智能领域中,提升人工智能系统的效率与能力,有望在未来实现基于量子系统的人工智能。

据了解,杜江峰院士团队自2012年以来率先开展了量子人工智能的实验研究相关工作如量子手写识别是量子人工智能应用于实际问题的最早案例,展示了量子技术加速人工智能问题的潜力;特征值检测、线方程组求解等技术为机器学中的数据运算提供了快速有效的量子方法。

此前的工作及国际上的相关实验研究,多集中在如何处理较理想的数据集。但无论是使用经典还是量子计算机进行机器学,在获得类似数据集之前都需要对原始数据进行分析和预处理,提取出其中的核心信息用以学与总结规律。这一过程被称之为数据特征提取,是量子人工智能运行的关键步骤。

其中,使用量子算法进行特征提取的理论思路最早于2014年提出,但由于其原始设想基于量子相位估计算法,需要大量量子比特作为辅助寄存器,因此一直未能在真实实验体系中予以实现。

为解决这一限制,杜江峰院士研究团队开发出新型基于共振的量子主成分分析技术,将辅助量子比特的需求降低到1个,大大降低实验难度;同时,为减少实际实验中的噪声干扰,该技术还可以结合量子相干保护手段,有利于在实际量子处理器物理台上达到高精度与高效率的量子计算。

最终,实验结果显示,这一特征提取过程达到了90%的提取精度与86%的提取效率,展示了该新技术在真实物理台上的适用与精确

研究结果显示此次研发的新技术可以实现对数据预处理过程的量子加速,高效率提取出量子数据矩阵中的关键特征,用于后续进一步分类与识别。该技术能够提升机器学的效率和效果,未来有望在较大规模量子处理器上得到应用。

推荐内容